POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Design properties of biometerials and implants

Course

Field of study Year/Semester

Biomedical engineering 1/2

Area of study (specialization) Profile of study

Engineering of implants and prosthesis general academic
Level of study Course offered in

Second-cycle studies Polish

Form of study Requirements full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

15 0 0

Tutorials Projects/seminars

0 30

Number of credit points

4

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

dr inż. Grzegorz Adamek

Instytut Inżynierii Materiałowej

grzegorz.adamek@put.poznan.pl

Prerequisites

Basic knowledge of materials, chemistry and physics of biomaterials. Ability to solve basic problems of science on the basis of existing knowledge, the ability to obtain information from identified sources. Understanding the need to broaden the competence, willingness to work together as a team.

Course objective

Provide students with basic knowledge of design properties of biometerials and implants, to the extent specified by the content of the program relevant to the field of study. Development of students' ability to solve simple problems related to the choice of nanomaterials and analysis of the results of studies based on the gained knowledge.

Course-related learning outcomes

Knowledge

Has knowledge of the methods of examining the physical and mechanical properties of biomaterials and

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

tissues: static, cyclic fatigue and others, methods of examining microstructure: optical, scanning and transmission electron microscopy, X-ray diffraction, methods of examining the surface of biomaterials.

Skills

To actively engage in solving the questions, independently develop and expand skills in field of biomaterials design

Social competences

Is aware of product design is a system consisting of technical, economical and management problems.

Is aware of other engineering aspects including environmental and responsibility for the decisions.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

In the scope of lectures: on the basis of answers to questions concerning the material assimilated at previous lectures - current activity and exam after completing the lecture series.

Written exam covering practical and theoretical issues. Individual elements of the exam are scored on a point scale, and in order to pass the exam, it is required to collect at least 50% of the total number of points.

In terms of projects: on the basis of an assessment of the current progress in the implementation of tasks and presentation of the completed project assessed on a point scale, it is required to collect at least 50% of the total number of points to pass.

Programme content

Possibilities of designing the properties of biomaterials: metals and alloys, ceramics, composites. Principles of implant design. Methods of producing bionanomaterials. In terms of projects: on the basis of the evaluation of the current progress in the implementation of tasks and the presentation of the completed project

Teaching methods

Lecture: multimedia presentation, illustrated with examples given on the board.

Projects: preparation and presentation of the project in a group.

Bibliography

Basic

articles from Scopus

M. Jurczyk, J. Jakubowicz, Nanomateriały ceramiczne. Wyd. Pol. Pozn. 2004

M. Jurczyk, J. Jakubowicz, Bionanomateriały, Wyd. Pol. Pozn. 2008

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

R. W. Kelsall, Nanotechnologie, PWN 2009

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,0
Classes requiring direct contact with the teacher	47	2,0
Student's own work (literature studies, preparation for	53	2,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

3

¹ delete or add other activities as appropriate